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Abstract

A scheme for multiparty quantum secret sharing of classical and quantum messages is proposed by using entanglement

swapping. This scheme can distribute not only the classical information but also the quantum information between N agents. The security

of our scheme is also confirmed.
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Suppose that the boss Alice wants to share a se-
cret key with her some remote agents, and there may
be one agent dishonest. She does not know who the
dishonest man is, but Alice believes that the honest a-
gents can prevent the dishonest man from stealing the
secret information and doing harm to her belongings.
For this goal, Blakley!!) and Shamir!?’ independently
proposed an original scheme for secret sharing in
1979. In their schemes, the secret key is divided into
n pieces and distributed to n agents Bob, (i =1, 2,
s, n). Only when all the n agents cooperate can
they reconstruct Alice’s secret key K, = K BlGBK Bz@

Ky . Here Kp is the key obtained by the agent
Bob;. Because a classical signal can be copied fully

and freely by a vicious eavesdropper, say Eve, it is
difficult for the parties to create the key K, securely
only with the classical physics.

The quantum secret sharing (QSS) is the quan-
tum counterpart of the classical secret sharing, and
becomes an important branch of quantum communica-
tion. In 1999, Hillery et al.®! proposed the first
QSS scheme with a Greenberger-Horne-Zeilinger
(GHZ) state, called HBB99 scheme. Up to now,
many studies have been focused on QSSP~2%),
cluding those for sharing an unknown quantum
state! =] Recently, Zhang and Man'??! introduced
a multiparty quantum secret sharing (MQSS) proto-

n-

col of classical messages by using entanglement swap-
ping with Bell states. In their protocol, the boss Alice
prepares three Einstein-Podolsky-Rosen (EPR) pairs
and uses four local unitary operations to encode the
secret messages on one of the three EPR pairs. She
sends the two particles in two EPR pairs to her two a-
gents, Bob and Charlie, respectively, and keeps the
other two particles. Moreover, Alice should set up an
entangled quantum channel for Bob and Charlie with
an EPR pair. By performing a local unitary operation
on one particle in her hand, Alice encodes her classi-
cal message in the quantum states and distributes it to
her two agents with entanglement swapping by means
that Alice takes a Bell-basis measurement on her two
particles kept. Each of the two agents can get the se-
cret key K, when the other agent works together
with him and each performs a Bell-basis measure-
ments on his two particles.

In this paper, we will present a multiparty quan-
tum secret sharing (MQSS) protocol with EPR pairs.
This MQSS scheme has the advantage of using less
physical resources.

1 MQSS scheme with two agents

An EPR pair is in one of the four Bell states:

o _ 1
|¢>—ﬁ(|00>1111>), (1)

* Supported by the Major State Basic Research Development Program of China (Grant No. 001CB309308), National Natural Science Foundation of
China (Grant Nos. 60433050, 10325521), and the Hang-Tian Science Fund, the SRFDP Program of Education Ministry of China
#* To whom correspondence should be addressed. E-mail: gllong@mail. tsinghua. edu. cn



Progress in Natural Science Vol.17 No.1 2007 www. tandf. co. uk/journals 27

1
J2
where |0) and |1) are the two eigenvectors of the
measuring basis o, (for instance, the polarization of a

| = —=(101) +110)), (2)

single photon along the z-direction). We can transfer
each of the four Bell states into another one by operat-
ing one particle in each EPR pair;

Ug =100 1+1 1)<1 1,

U, =100 1-11)<11,

U, =1 DO 1+10)C1 1,

U, =100 1-11)¢01. (3)

These four operations can represent two bits of classi-
cal information 00, 01, 10 and 11, respectively, in
quantum communication.

For simplification, we first consider the case
with two agents, say Bob and Charlie. Our MQSS
scheme works with the following steps:

@D Alice prepares two sequences of EPR pairs,
say S, and S,. Each sequence is composed of N or-
dered EPR photon pairs in the same quantum state,
say | ¥ ). We denote the N ordered EPR pairs by
[(P,(C), P,(M)), (P,(C), P,(M)), (P,(C),
P,(M)),-, (Py(C), Py(M))]. Alice takes one

photon from each EPR pair to form an ordered EPR
parter photon sequence, say [P, (C), P, (C),
P,(C),--, Py(C)], which is called the checking
sequence ( S sequence). The remaining photons
compose another sequence [ P, (M), P, (M),
Py(M), -, Py(M)], called the message-coding se-
quence ( S, sequence), being the same as that in
Refs. [28,29].

@ Alice sends the two checking sequences, say
Sc; and S, to her two agents Bob and Charlie, re-

spectively, and always keeps the two corresponding
message-coding sequences, Sy and S,;.

@ After the two agents received their se-
quences, Alice chooses a subset of EPR pairs as the
samples for checking eavesdropping from each EPR-
pair sequence. Alice can complete the process for
eavesdropping check with each agent with the method
introduced in Refs. [28, 29]. That is, Alice first
picks out the positions where the photons will be used
to check eavesdropping. She tells her agents which
photons are to be measured with one of the two MBs,
o, or o,. After the measurements are done by the a-

gents, Alice performs the corresponding measure-

ments on her sample photons. They analyze the error
rate of the samples by comparing their results in pub-
lic.

If the error rate is by far lower than the thresh-
old value €, the parties continue their quantum com-
munication to the next step; otherwise, they will
abort the whole transmission.

@ Alice encodes her message K, on the photons
in the sequence Sj,; with one of the four local unitary
operations U, (i =0, 1,2, 3). Then she performs a
Bell-basis measurement on every pair of photons com-
posed of P;,(M1) and P;(M2), which come from
the two message-coding sequences S, and S,,.
Here j=1,2, -, N. Alice publishes her outcomes of
the measurement for each pair.

® If Bob and Charlie collaborate after receiving
Alice’ s information, they can perform a Bell mea-
surement on the two corresponding photons P, (M1)
and Pj(MZ) which come from the two checking se-
quences of S, and S,,, respectively. Otherwise,
neither of them can obtain the key K, .

For example, if the local unitary operation cho-
sen by Alice in step (4) is U;, then the state of the
photons P;(M1) and P;(C1) would be transferred
into the state | @ ) y00s i€ Us | ¥ ) e =
| ®") pic1- After the local unitary operation, the
state of the photons P;(C1), P,(M1), P;,(C2) and
P;(M2) can be written as:

U3 ! 1II.>M1C1 ®| W_>M2C2
' <D+>MlCl ®| ‘F->M2C2

1 -
3“ )z | ¥ a1

-1 W+>M1M2 | <z)->01cz

1Y) a2 | @D i

10D pimz | ¥ i) (4)
When Alice performs a Bell-basis measurement on
photons P;(M1) and P;(M2), the state of the pho-
tons P;(C1) and P;(C2) will collapse to a corre-

sponding state. Supposed Alice’s
|®*) pimes then the two corresponding photons

P,(C1) and P;(C2) controlled by Bob and Charlie,

respectively, should be in the state | ¥ ) ¢, -, accord-
ing to Eq. (4). That is, Bob and Charlie can deduce
that the local unitary operation chosen by Alice is U,

outcome is
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and the two-bit classical information distributed is
11.

Different from the Zhang-Man protocolm], it is

unnecessary for the boss Alice to set up another quan-
tum channel for the two agents. The agents can read
out the message encoded by Alice if and only if they
work together and measure their photons. In this
scheme, Alice can prevent a dishonest man from
stealing the information by using check mode, the
same as the two-step protocol! 2!, So it is also se-
cure against other quantum techniques. Because al-
most all the entangled states are useful for quantum
communication, the intrinsic efficiency for qubits 5,

=% approaches 100%, the same as that in Refs.

t
[28—31]. Here g, and gq, are the useful qubits and
the total qubits transmitted, respectively. The total
efficiency 7, in this scheme approaches 50% as two
bits of classical information are exchanged for two
qubits. 7 is defined ast32:33)

— qu
77! - qt + bt’ (5)

where b, is the classical bits exchanged between the
parties in the quantum communication. Even though
the total efficiency 7, is lower than that in Refs. [17,

18], it is unnecessary for the photons to run forth
and back from Alice to her agents.

2 MQSS scheme with N agents

We use N =3 as an example to describe the prin-
ciple of our MQSS scheme with N agents.

Firstly, we introduce a complete orthonormal
basis of the combined Hilbert space of the three parti-
cles as follows;

| %) =Jl§(| 000) +1111))

| %) =é(| 001) +1 110))
| K*) =Jl§(| 010) +1101))
| I'*) = L(I 011) +1 100)). (6)

/2

We give the specific steps of the QSDC protocol
as follows:

@ Alice creates a string A of 3N random classi-
cal bits and divides this string into groups of three
bits.

Then she prepares three sequences of EPR pairs,
say S;, S, and S,. Each sequence is composed of N
ordered EPR photon pairs in state | ¥~ ). Similar to
Section 1, we also denote the N ordered EPR pairs
with [(P, (C), P, (M)), (P,(C), P,(M)),
(P4(C), Py(M)), -, (Py(C), Py(M))] and

form three checking sequence S¢y, S, Scy and
three messagecoding sequence Sy, Sy Sps-

@ Alice sends Sz, Sc, and Sg; to her three a-
gents, Bob;, Bob, and Charlie, respectively, and
keeps the three message-coding sequence Sy, Sy,

SM3'

@ After all the agents receive their sequences,
Alice preforms the security checking with the same
method in step(3) of Section 1. If the transmission is
secure, she will continue to the next step.

@ Alice discards the photons which has been
chosen for security checking and picks out three pho-
tons P;(M1), P,(M2) and P;(M3) from the three
message-coding sequences Sy, Sy, and Sy4, respec-
tively. Then, according to the corresponding group
A; in the string A, Alice encodes her message K, on
the three particles. For example, if A; =010, then
Alice performs a local unitary operation U,(i =0, 1,
2, 3) which is previously selected by Alice and her a-
gents on the photon P;(M2); if A, =101, then Al-
ice performs a local unitary operation U, on the pho-
tons P;(M1) and P;(M3), etc. Here, j=1,2,,
N.

After doing that, Alice performs a three-particle
GHZ state joint measurement on P;(M1), P,(M2)
and P; (M3) and publishes her measurement out-

COImes.

® If Bob,, Bob, and Charlie collaborate, they
can perform a three-particle GHZ state joint measure-
ment on the three corresponding photons P, (C1),
P;(C2) and P, (C3) which come from the three
checking sequences Si;, Sg, and S3, respectively.
According to their measurement outcomes, they can
get Alice’ s message K,. Otherwise, none of them
can obtain the key K, .

For example, if Alice chose the local unitary op-
eration U, in step @, and the corresponding group
A; =010, then the state of the photons PJ(M2) and
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PJ- ( C2) would be transferred into the state

|¢+>M2C2'

After the local unitary operation, the state of the
photons P; (C1), P, (M1), P, (C2), P; (M2),
P,(C3) and P,(M3) can be written as:

LD ot @ (Us 1 7)) copn) @1 ¥7) (qps

=1 ¥ eam @ P @ ¥ o
= ‘/%U K" cicaes | T pymams

+1 K7 cicacs | 17D mamems)

- (1 H+>C102C3 | n+>M1M2M3

+1 87 cicaes | K7) mimams)

- (| K+>C1C2C3 | H+>M1M2M3

+1 K—> C1C2C3 l H_>M1M2M3)

+ (| P+>c1c2c3 | n+>M1M2M3

+1 T crcees | 870 pmzms) - (7)

When Alice performs a three-particle GHZ state
joint measurement on photons P;(M1), P,(M2) and
P;(M3), the state of the photons P,(C1), P;(C2)
and P; (C3) will collapse to a corresponding state.

Supposed Alice’s outcome is | I' 7) psypam30 then the
three corresponding photons P; (C1), P;(C2) and
P,(C3) controlled by Bob,, Bob, and Charlie, re-
spectively, should be in the state |£2 ) ¢, c,c3 accord-
ing to Eq. (7). That is, Bob,, Bob, and Charlie can
deduce that the three-bit classical information dis-
tributed by Alice is 010.

It is easily to generalize this MQSS scheme to ar-
bitrary multiparty case.

Assume that there are N agents, Bob,(i =1,2,
=, N —1) and Charlie, and Alice wants to distribute
her secret information among the N agents. Then,
Alice creates a string A of N? random classical bits
and divides this string into groups of N bits. She pre-
pares N sequences of EPR pairs S,, S;, ***, Sy. Each
EPR photon pair is in state | % ™). Alice sends S,
Sczs***s Sci to her N agents and keeps the N mes-

sage-coding sequence Sy, Spp0 0ty Sy

After all the agents received their sequences, Al-
ice performs the security checking with the same
method as in step @ of Section 1. If the transmission
is secure, they will continue to the next step.

Alice discards the photons which have been cho-
sen for security checking and picks out N photons
P (M1),P,(M2), -+, P,(MN) from the N mes-
sage-coding sequences Sy, Sy, =5 Spn» TESPEctive-
ly. Alice encodes her message K, according to the
corresponding group A; in the string A, the same as
the step @. After doing that, Alice performs an N-
particle GHZ state joint measurement on P, (M1),
Pj(MZ), P (MN) and publishes her measure-

ment outcomes.

If the Bobs and Charlie collaborate, they can
perform an N-particle GHZ state joint measurement
on the N corresponding photons P;(C1), P;(C2),
"',P)-(CN) which come from the N checking se-
quences S¢y, Scps ***» Scns respectively. According
to their measurement outcomes, they can get Alice’s
message K, . Otherwise, none of them can obtain the

key K, .

In this scheme, we distribute N bits of classical
message among the N agents with N-particle GHZ-
state measurement. It has a higher capacity. On the
other hand, this scheme can save the entanglement
resource, too.

3 MQSS scheme for sharing an unknown ar-
bitrary n-qubit state

In this section, we will present a scheme for
sharing an unknown arbitrary n-qubit state with en-
tanglement swapping. For simplicity, we will de-
scribe the 2-qubit state 2-agent case firstly.

We assume that there are two agents, Bob and
Charlie. Alice, the sender, wants to distribute an un-
known arbitrary two-particle state between Bob and
Charlie. Firstly, Alice has 6 particles, particle 1, 2,
3, 4, x and y, in her hand. Particles 1, 2 and parti-
cles 3, 4 are both prepared by Alice in the Bell basis
state | 7). Particle x and y are in an unknown ar-
bitrary two-particles state which can be described as

1 X),, =al 00),, + B 101),,
+y 110, +8 111, (8)
where
la l2+1 82 +1y1P+1812=1.  (9)

Alice sends particles 2 and 4 to Bob and Charlie,
respectively, and keeps particls 1, 3, x and y for
herself. After both Bob and Charlie receive the parti-
cles, Alice performs a Bell measurement on particles
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x, 1 and y, 3, respectively, and announces the mea-
surement outcomes. Then, if Bob and Charlie cooper-
ate, they can recover the original state | X) .

Let us use an example to explain our scheme in
detail. Firstly, we assume that both the EPR pairs
are originally prepared in one of the four Bell states
| ™)=1/4/2(|01) = |10)). Then, before Alice’s
measurement, the state of the composite quantum
system of the 6 particles can be written as

1), =1 X)), Q1 ), Q1 ¥),,. (10)

If Alice performs a Bell measurement on particles
x, 1 and the measurement outcome is | &%) ,,

which will occur with probability %, then the state

of the subsystem with particles y, 3, 2 and 4 be-
comes
I ) =(a 10011) — a 1 0110) + 51 1011)
- B 1 1110) + y 1 0100) — ¥ | 0001)
~ 8 11001) + 8 11100)) 55,,  (11)
and then, the state can be rewritten as
| D) =1 %) 3(a 1 11) = B 1 10)
- 7|01> +6|00>)24
+1 07) 5(a 1 11) + g1 10
- 7]01) -4 00>)24
+ W) 4(—a 110) + 81 11)
+7100) -8 101)),,
+ W) (a1 10) - g1 11)
+7100) +6101)),,. (12)

Therefore, if Alice performs another Bell mea-
surement on particles y and 3, the quantum informa-
tion of the state | X) . will be transferred to particles
2 and 4 which are controlled by Bob and Charlie.
Suppose Bob and Charlie agree to cooperate, they can
recover the unknown state by performing some uni-
tary operations according to the Alice’s measurement
outcomes. For example, if Alice’s measurement re-
sults are [@7) 5, [®7) 5, [ ¥7) jor [¥7) 5, re-
spectively, Bob and Charlie can perform the unitary
operations U,QU,, U,QU,, - U,QU, or - U,
@ U, on particles 2 and 4, respectively, and recon-
struct the unknown state | X) .

It is easy to generalize this MQSS scheme to the
N party case. We also suppose that there are N a-
gents, Bob,(i =1,2, -, N —1) and Charlie, and Al-
ice wants to distribute an unknown arbitrary two-par-
ticle state | X) . among the N agents.

Then, Alice prepares N EPR pairs in the Bell
state | ¥ ) and sends one particle of each EPR pair
to Bob; and Charlie, retains other particles for her-
self . After all the agents receive the particles, Alice
randomly selects one particle from particles which are
held in her hand, and performs a Bell measurement
on this particle and particle y, and then she performs
a joint measurement on particle x and the others
which held in her hand and announces the measure-
ment results. Hence, if Bob;s and Charlie collabo-
rate, they can perform a joint measurement on N —2
particles which controlled by them. As a result, the
information of the unknown state has been distributed
to the remaining two particles. And then, they can
recover the unknown state by performing a corre-
sponding unitary operation according to their and Al-
ice’ s measurement outcomes. If Bob;s and Charlie do
not collaborate, none of them can get the quantum in-
formation.

Similar to the above scheme, we can also dis-
tribute an unknown arbitrary n-qubit state among n
agents.

An arbitrary n-qubit state can be written as
| Xy, = e Vi), s (13)
'l'z'"'l
where i, i,, =", i, € 10,1}, and z,, x,, ***, z,, are
the n particles which carry the quantum information.
In order to distribute the above state, Alice will pre-
pare n EPR pairs and share them with her » agents
securely. Each EPR pair has been prepared in the

state I‘I/>abr=‘/%( 101) — [10)),, (where j =1,2,

=y n, and a;, b; are the two particles of the jth EPR
pair). Then, Alice sends one particle of the jth EPR
pair, say b; to the jth agent Bob;, and keeps the par-
ticle a;(j = 1,2, +*, n). After all the agents receive
the particles, the state of the composite quantum sys-
tem can be described as :

1 2), = ( .' 2 i iy, l iliz"'i,.>,lzz..._,.)

R f[[%au 01) —| 10>)a,,] (14)

Then, Alice performs the Bell measurements on
the particles x; and a;, and announces all the mea-
surement outcomes. After doing these, the unknown
n-qubit state will be transferred to the » particles
which are controlled by n agents Bob;s (i =1,2, -,
n). If and only if all the n agents cooperate, they
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can recover the unknown n-qubit state. Otherwise,
none of them can get the quantum information of the
unknown n-qubit state.

In this scheme, we use EPR pairs to share an
unknown arbitrary n-qubit state with n agents, and
the security of the sharing EPR pairs between two a-

gents has been discussed in Refs. [20,22,28—31].
Thus, the proposed scheme is secure.

4 Summary

In this paper we have proposed a scheme for
multiparty quantum secret sharing of classical and
quantum messages by using entanglement swapping.
With our scheme, not only the classical information
but also the quantum information can be transmitted
to N agents. The security of our scheme is also con-
firmed.
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